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STUDIES RELATING TO TEMPERATURE CONTROL

OF A LARGE SPACE TELESCOPE

By S. Katzoff
Langley Research Center

SUMMARY

Analytical methods are developed for estimating the circumferential and longitudi-
nal temperature distributions in a large space telescope, idealized as a simple insulated

cylindrical tube with a flat mirror across one end. The basic variable is oT4 , where

a is the Stefan-Boltzmann constant and T is the absolute temperature. The circumfer-

ential distribution is found as a Fourier series. With the view factor between circular

bands of the tube approximated by a simple exponential, the longitudinal distribution is

then found as an exponential expression.

The effects of wall conduction, multilayer insulation, thermal-coating characteris-
tics, heat pipes, and heated collars are analyzed, with numerical examples. The effects

of nonuniform coatings and insulation are also discussed. A brief analysis is also given

of unsteady heat flow through the insulation, as in alternate light and shadow of a low orbit.
The numerical examples were mostly simplified by assuming that the only external ther-

mal input was from solar radiation directed at right angles to the tube axis.

Multilayer insulation around the large tube can limit the circumferential tempera-

ture nonuniformity to tenths of a degree. Adding circumferential heat pipes can reduce

it further, to hundredths of a degree. The insulation, however, lowers the tube tempera-

ture and causes a pronounced drop in temperature along the tube toward the open end. A
heated collar around the inside of the tube near the open end can overcome this problem

and provide a nearly uniform temperature along the tube between the mirror and the

collar.

INTRODUCTION

Among the more ambitious of the space-science proposals that are under study by

various research groups is the diffraction-limited Large Orbiting Telescope (LOT), or

Large Space Telescope (LST), more or less as it was proposed by Lyman Spitzer, Jr.,

some years ago. (See ref. 1.) The extent and intensity of interest in such a telescope

are attested by the many papers dealing with the various facets of its design and con-

struction that were presented in a 1969 workshop on optical telescope technology. (See
ref. 2.)
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As was pointed out in reference 1, maintaining diffraction-limited optics in a tele-

scope of, say, a 3-meter or larger diameter, implies an extremely fine'temperature
control in order to avoid thermal distortions. Temperature uniformity and constancy to
within a small fraction of a degree may be required. However, the availability of mate-
rials with very low thermal coefficients of expansion should help to alleviate the problem.

Active optics (that is, continuously adjustable mirror figure and alinement) is an addi-
tional approach to alleviating the problem. (See ref. 3.) Heat pipes, vapor chambers,
phase-change materials, thermal shields and enclosures, multilayer insulations, and

automatic shutters may also find application in solving the thermal problem.

The present paper is an analytical study of the thermal problem for a simple ideal-
ized configuration that should serve as a first approximation to any eventual design. Spe-
cifically, the configuration is essentially a cylindrical
tube with its inner surface perfectly black, and with a Mirror
flat, perfectly reflecting mirror at its closed end. (See

sketch (a).) The axis is assumed to be normal to the I 1 I ( I I I
solar radiation for most of the analyses. Although Sketch (a)
the large telescope would probably be of the Cassegrain type, no effort has been made to
take into account the presence of the secondary mirror or of the hole at the center of the
primary mirror. This simplification should not greatly affect the usefulness of the anal-
ysis and results.

This study has two purposes: (1) to present analytical methods that are available
for making such a study, and (2) to present enough numerical results to indicate the
degree of temperature uniformity attainable by the various means discussed. The ana-
lytical methods concern the determination of circumferential and longitudinal temperature
distributions in the tube wall. The analysis of the circumferential distribution involves a
Fourier-series approach; the analysis of the longitudinal distribution involves use of an
exponential view factor between circular bands in the cylinder. None of the methods
described require more computer capability than is available in a programable desk-top
calculator.

Steady-state conditions were assumed for nearly all cases. As previously indicated,
for most of the calculations the cylinder axis was taken as normal to the solar rays, and
the shaded half of the cylinder was assumed to receive no radiation at all. The effects of
insulation, thermal coating, heat pipes, and heated collars were considered. A few cal-
culations concerning the effect of alternating sunlight and shadow, as in a typical low orbit,
were also made. No effort was made to cover wide ranges of the parameters and of their
various combinations. However, the results should be adequate for showing the main
aspects of the problem.
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Some of the results given in this paper were presented previously in a paper at the
workshop (ref. 4). The analytical methods, however, were not described in that paper.

This paper should be recognized as fairly limited in both purpose and scope. It
mainly concerns the temperature of the telescope tube. If this temperature can be main-
tained uniform and constant, the uniformity and constancy will be reflected in (1) the
radiation striking the face of the primary mirror, (2) the radiation environment of the
secondary mirror, and (3) the alinement of the secondary mirror with the primary mirror.
But even within this limited purpose of the paper, some important pertinent problems have
not be analyzed - for example, the use of a removable cover for the tube opening.

SYMBOLS

A,B,C constants in expressions for z(x) and y(x) (for finite-length tube)

a circumferential mean value'of z on outer layer of insulation (for finite-
length tube)

an coefficient of cos nO in Fourier series for z

a0 mean value of z around infinite cylinder

30C thesolar cons tanterial, cal/cm-sec-K

C thermal conductivity of wall material, cal/cm-sec-K...

k+E

cos* 0 function defined by equation (6)

cEi
=

° Ei + Pi c

h =
Vl +g

"radiation conductance" of multilayer insulation (Rate
is k(zo - zi), cal/cm2 -sec.)

of heat transmission

3
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1 length of telescope tube (mirror to opening), radii

m distance from mirror to beginning of heated isothermal collar, radii

n distance from mirror to end of heated isothermal collar, radii

p half the spacing between circumferential heat pipes, cm

p,q,r coefficients in power series for z(x)

q = or 4 on heated isothermal collar

r radius of cylinder, cm

s factor for radiation exchange on inner wall of finite-length tube

T temperature, K

/a0\/4
T circumferential root mean fourth power of wall temperature, ) , K

t time, sec

u rate at which radiation leaves a unit area, cal/cm2 -sec

x longitudinal distance along tube from mirror, radii

x longitudinal distance from circle midway between adjacent heat pipes, cm

y O T4 along tube between heated isothermal collar and open end

z= aT 4

a( solar absorptivity of outside surface

0 angular distance around cylinder from subsolar point

0' dummy variable corresponding to 0

dummy variable corresponding to x

4



Pi reflectivity of inner cylinder wall

E thermal emissivity (of outside surface unless otherwise indicated)

Cr Stefan-Boltzmann constant, 1.3556 x 10 - 12 cal/cm2-sec-K4

T wall thickness, cm

Subscripts:

o outside surface of insulation

i tube wall

f finite -length tube

m midway between circumferential heat pipes

max maximum around circle

min minimum around circle

1 outside surface of variant section (see sketch (j))

0,1,2,...,9 ten sheets of a multilayer insulation (eq. (34)); 9 refers to sheet adjacent

to tube wall, 0 refers to outside sheet

10 tube wall

Primes denote differentiation with respect to x.

INFINITELY LONG CYLINDER

As a first step, the case of the infinitely long thin-walled metal cylinder will be

analyzed. The cylinderis in space, at one astronomical unit (1 A.U.) from the sun, with

its axis normal to the solar radiation. No other radiation is present, so only the sunlit

half receives radiation, while the other half receives no radiation at all.

The following section will consider the simple case of the uninsulated cylinder in

order to exemplify the method of analysis. Subsequent sections will consider the effects
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of (1) insulation, (2) circumferential heat conduction in the cylinder wall, and (3) circum-

ferential heat pipes attached to the cylinder wall. The analysis is similar in many

respects to that of reference 5.

Uninsulated Cylinder

Internal radiation exchange.- The inner surface of

the cylinder is assumed to be perfectly black. Then, of

the radiation emitted from any (infinitely long) longitu-

dinal element of the internal surface at 8', the fraction \ do

1sin - eL dO is received by an element at 0 of
4 2
angular width dO (ref. 6, pp. 19-21). (See sketch (b).)

The basic variable will be taken, not as tempera- 0 =

ture T, but as z =- T4 , where a is the Stefan- Solar

Boltzmann constant. Let the distribution of z around radiation

the cylinder be given by a cosine series in 0, the angle Sketch (b)

from the subsolar point:

z(0) - oT 4 () =a 0 + a 1 cos + a2 cos 2 0 + a3 cos 30 + .. (1)

Then at any circumferential location 0, the received radiation intensity contributed by

the cos nO term is

I 0+27r 01 O a nan +2 cos nO' sin 0' =d cos nO (2)
4 n .'=O 2 4 n2 - 1

Thus, the received radiation intensity also varies as cos nO, but its phase is reversed
and its amplitude is reduced by the factor 4n2 - 1.

Temperature distribution.- Let the cylinder diameter be so large relative to the
wall thickness (for example, a 3-meter-diameter cylinder with a wall of 1-mm-thick

aluminum) that heat transfer by thermal conduction around the wall is negligible in com-
parison with heat transfer by radiation across the inside of the cylinder.

Let

b solar constant, 1 cal/cm2 -sec

ao solar absorptivity of external surface

E thermal emissivity of external surface

6



As already noted, the internal surface is assumed to be a perfect absorber and emitter.

Then, on the sunlit half of the cylinder( O | < 2)'

00 00

ab cos 0 - E an cos no = (1 + e) a n cos no (10s< 7r (3)

n=0 n=0

where the first term on the left is the heat input from the sun; the second term on the left

is the heat received by radiation from the entire internal surface of the cylinder (see

eq. (2)); the term E ; an cos nO on the right is the heat radiated away from the outer

surface; and the remaining term on the right, E an cos nO, is the heat radiated from the

inner surface.

For the shaded half of the cylinder (-< I 0 1 < 7r), the first term on the left-hand side

of equation (3) is omitted, and the equation becomes

4n2 1 oE ancos nO

0 4 n 2 0

Equations (3) and (4) may be combined by

introducing the function cos* 0, which is the

same as cos 0 for |o I < 2 and which is zero

for 2< 0 < 7. (See sketch (c).) The combined

equation is

(I2T <J I I < J r) (4)

cos* 0

= 0 7T/2 7r

Sketch (c)

00 00

ab cos* 0 - cos nO = (1 + E) an cos nO

0 4n O~0

The function cos* 0 may be expanded in a Fourier series:

cos* o = 1 + cos 0 + 2 cos 20 - 2 cos 40 + 2 cos 60 - . . .
7T 2 37T 15w 35w

n_ 1

+ 2 2 cos n (n even) (6)
(n 2 -1)it

Substituting this series for cos* 0 in equation (5) gives

ob j7 - ++ 3r cos 20 - .. . +1 + )an cos n (7)
2

7

(o < I 0 I < Tr)o (5)



The an are now found from this equation simply by equating coefficients of cos nO.
The results are

cab

ao=

2ab
a2 37(16 + 

2ab

a 6 = /144
357T 4 +E)

n 
1

an =(1)2 2ab (n even)
(n2 - 1)7T 4n

2
+e)

4n
2

-1

a 3 = a
5 = a 7 = . . = 

With these coefficients, the series (1) may be evaluated to give oT4 (0), from which
T(e) may be determined. The constant term of the series, ao, which is the circumferen-
tial average value of aT4 , depends only on the a/E ratio, and not on the separate values
of a and e.

Figure 1 shows the calculated circumferential temperature distributions for the fol-
lowing four pairs of values of external absorptivity and emissivity:

8
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1 1.0 1.0
2 .4 .4
3 .25 .85
4 .15 .85



The third and fourth cases correspond roughly to white paints. (One might also consider
the fourth to represent a fresh white paint, and the third to represent the same paint after
extended exposure in space.) The second case might correspond roughly to a metallic
paint, like fine aluminum flake in a suitable clear vehicle. The first case, of course,

corresponds to a theoretically black surface.

The root mean fourth power of the temperature (a 0 /(c)1/4, designated as T, has
been indicated by a short line for each case. Its value is somewhat higher than the true

average temperature.

The curves have about the expected shapes, but several features might be mentioned:

(1) The coolest part of the wall is not at the antisolar point, 0 = 1800, but at
0 = 90 ° . The reason is that the hot subsolar area around 0 = 0° radiates more strongly
to the antisolar point than to any other point, because of the sin IO [01 factor, which is
a maximum when 1 ' - 01 = 180°; whereas a point just at the edge of the shadow receives

the least radiation. As will be shown subsequently, circumferential heat conduction in
the wall will eliminate the sharp breaks in the curves at a = I and will also shift the

location of the temperature minimum to larger angles.

(2) The curves all seem to pass through T near 0 = 70 ° .

(3) Although cases (1) and (2) have the same value of a/e, the first shows a much
larger temperature variation than the second. The reason is that the temperature-

equalizing tendency of the internal radiation exchange is the same in both cases (since
the internal surface was assumed to be black), and is thus relatively more important in
the second case, where the external heat exchange is weaker (that is, lower a and E)
than in the first case.

(4) The largest temperature difference between the warmest and coolest points is
99 K (for a = e = 1.0); and the smallest temperature difference is 58 K (for a! = 0.15;

e = 0.85). Differences of this order are unacceptable for the telescope. It is apparent
that a very effective insulation will be essential in order for the rate of heat flow between

the outside and the inside to be very small relative to the rate of heat exchange by radia-
tion within the cylinder.

The effect of a gray internal surface.- In the preceding analysis the internal sur-

face was assumed to be perfectly black, for which case the fraction of the radiation
emitted from an element at 0' that is received by an element of angular width do at
location 0 is I sin I ' -el d0. If the internal emissivity is some value e

i
< 1, not2

only is the emitted radiation reduced by the factor ei (for given T(&')), but the fraction

of this radiation that is absorbed by the element at 0 (including what is absorbed after

one or more reflections) is changed to

9



eil/2 cos (eil/2 [T - ('- 0)]J
Ei COS yE1 2 9 

2i~i:~~ dO
4 sin(Ei /2 dr)O

(See ref. 7; a related analysis is given in ref. 8.) For ei values of about 0.90 to 0.95,

the value of this expression is less than 1 sin IO' - O for 18 - 81 > 810, and exceeds
4 2

it for 8' - 0 < 81 ° .

Correspondingly, equation (2) for the absorbed radiation intensity contributed by

the cos nO term is changed to

n0+27r

eian I

'Jo =0

il1/2 cos (eil/2 [-( - 0)] e 2

cos nO' dO' = a n cos nO

4 sin (il/2) 4n2 ei

2
If the factor i is substituted for in equation (7), the Fourier coeffi-

4n2 - e
i

4n 2 - 1
cients (eqs. (8)) become

ab
aO = 2e o

a = ab

2(4 + e
\4 - Ei

n-1

an = (-1)2
2ab

(n2 - 1)7r 4n2 ei + eo
4n2 - ei i

a 3 = a 5 =a 7 . . .= 0 J

where the outside emissivity has been written e
o

to distinguish it from the internal

emissivity ei.

Values of ei of about 0.95 have been reported for some mat black coatings such

as would presumably be used in the telescope tube. With such values, the temperature

variation around the tube would be increased (relative to what is shown in fig. 1) by

10
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about 5 percent. Accordingly, the results shown in the present paper, which are all
based on Ei = 1, slightly underestimate the circumferential temperature variation.

The Effect of Insulation

Assumed insulation characteristics.- Consider the cylinder to be wrapped in multi-

layer insulation - that is, many layers of aluminized plastic sheet, loosely packed. The
multilayer insulation is idealized in the sense that heat transfer across it will be assumed

to occur only by radiation between adjacent layers. Such idealization provides important
simplification of the analysis because it permits z(=-T4) to be retained as the basic
variable in all parts of the analysis; in particular, the heat flow through the insulation is

proportional to the difference between the z values on the outer and inner surfaces.

Thus, the heat flow is written as k(z
o

- zi), where k is a "radiation conductance," z
o

is the value of z on the outermost layer of insulation, and zi is the value of z on the
inner cylinder. For a small difference-between the temperatures To and Ti, the heat

flow would then be

kA (oT4) = 4koT 3 AT

where the factor 4koT3 may be interpreted as the usual conductance, which, however,

varies rapidly with T.

In order to test the approximate validity of this concept, one might examine whether
measured conductivities of multilayer insulations do indeed vary with T 3 . In refer-

ences 9 and 10 (p. 10) are a set of data for several different multilayer insulations, obtained

with a very sensitive apparatus that could provide conductivity values even when AT
was as small as 6 K. These data have been replotted on a log-log plot in figure 2. Best-
fit straight lines are shown for the various insulations; in addition, an exact T 3 varia-
tion (the heavy solid line) has been added to the plot. It will be seen, first, that most of

the groups of data points do indeed lie nearly on straight lines; and furthermore it will be
seen that the slopes of most of the lines lie between 2 and 3, whereas two of the lines

have slopes exceeding 3 (3.5 and 4.25). The high slopes are not necessarily in error,
since theory predicts that the aluminum coatings should have an emissivity approximately
proportional to T (as may be shown, for example, from eq. (2) of ref. 11, by using hand-

book values of the electrical resistivity of pure aluminum), which would cause the con-

ductivities to vary as T4 rather than as T3 . The lines with the smallest slopes are

for the insulations with the highest packing densities, for which there is presumably an
increased proportion of conductive heat transfer. On the whole, then, one may conclude

from figure 2 that the T3 variation assumed for the present analyses is not unreason-

able for a well constructed multilayer insulation that is not too densely packed.

In the calculations to be presented later, k values of 0.001, 0.0025, and 0.025
were used for the insulation. Since the thermal emissivity of aluminized Mylar sheet is

11



about 0.05, these values correspond theoretically to about 25, 10, and 1 or 2 layers,
respectively. The heavy solid line of figure 2 corresponds to a 1-cm-thick insulation
for which k = 0.0025. Since the line lies within the range of test results, values of the
order of 0.0025 may thus be considered as fairly realistic (although it is well known that
careful design and construction are necessary to prevent extraneous heat flows that
greatly exceed predictions from such laboratory values).

Derivation of Fourier coefficients.- The problem is set up as before, although it is
now slightly more complicated. On the sunlit half of the cylinder, the heat flow through
the insulation satisfies the equation

ab cos 0 = Ezo + k(zo - zi) (Ii 2l (9)

where the left-hand side of the equation is the solar heat input to the outermost sheet of
insulation; the first term on the right is the heat radiated to space from this outermost
sheet; and the second term on the right is the heat transferred through the insulation
from the outermost sheet to the inner cylinder. The z terms are functions of 0. On
the shaded half of the cylinder, the solar heat input is zero, and the equation is

O = EZ + k(Zo z) ( I i<7) (10)

Equations (9) and (10) may be combined, as before, by writing

oab cos* 0 = EZO + k(Zo - Zi) (11)

Solving for z0 gives

a b cos* 0 + kz i
Z

O
=

e +k

whence

ab cos* 0 - eZi

o - i = + k (12)

Equilibrium of the inner cylinder provides the equation
00 00

k(zo zi) _ an2 cos n= an cos nO (13)
0 4n2 -'1 0

where the first term on the left is the heat transferred in through the insulation at 0,
the second term on the left is the radiation received at 0 from the entire inner surface
of the cylinder, and the term on the right is the heat radiated away from the element at
0 into the inside of the cylinder. Substituting the expression for zo - z

i from equa-
tion (12) into equation (13), while replacing cos* 0 with its Fourier series and replacing

00

Zi with Z an cos nO, gives
0

12



kab + -- cos 20 = + ancosn
e + k 2 3i e + k 2

0 4n -1

from which, by equating coefficients of cos nO, the Fourier coefficients for z i are
obtained:

Lb

oab

2al4 2k (14)
2ab

a 2 37 r16 e +.+ 

The coefficient a 0 (the average value of zi) is the same as before. The other
coefficients are changed only by the factor (E + k)/k on one of the terms in the denom-

inator. With k = o, the coefficients reduce to those previously derived for the uninsu-
lated cylinder (eq. (8)).

The Effect of Circumferential Heat Conduction

It was previously indicated that for the Large Space Telescope, the heat conduction
around the cylinder would be negligible relative to the radiation heat transfer. It would
not be negligible for a much smaller telescope, however; so, for completeness, the pre-
ceding analysis will be extended to include this effect. The equations will be developed
for the general case in which the wall thickness is T cm and the conductivity of the wall
material is C cal/cm-sec-K. In all the computed examples, however, the wall will be

assumed to be O.1-cm-thick aluminum (T = 0.1; C = 0.5; CT = 0.05).

The circumferential flow of heat, by conduction, into 1 cm2 of the wall is CT d2 T
r2d02'

where r is the cylinder radius. With z i = oT4 , dz 43 do or, since T remains1dO Td or, since T remains

close to its root mean fourth power T,

dzi 43 dT
do do

d2 i 4 d2 T

d02 d02

13



-4
Since aT = ao (the constant term in the Fourier series for zi), the factor

4o 3 4a0 = 4I1/4ao3/4. The conduction term Cr d
2 T thus reduces to

(a0/u)1/4 r2da2

CT d2zi CT 2-zC n2 an cos nO
4r2al/4ao3/4 dO2 4r2rl/4a 0 3/4 1

(where the series in eq. (1) has been substituted for zi). This term is now inserted into
the left-hand side of equation (13) as an additional heat-input term. The Fourier coeffi-
cients for the insulated cylinder, with circumferential conduction taken into account, are
now found as

fab

kaob
E +ka-

2 + ek + 4r21/43/4

(15)

n_l -12kab
e +kan = (_1)2 (n even)

(n2 - 1 )>r/4n2 + Ek + C 2

4n2 1 E +k 4r21/4 a0 3/4

a 3 = a 5 = a7 = . . = 

Calculated results will be presented after the following section.

The Effect of Circumferential Heat Pipes

Derivation of heat-transfer term.- Suppose that the infinite cylinder has circumfer-
ential heat pipes around it at small fixed intervals. (See sketch (d).) These pipes would
serve to reduce the circumferential temperature variation. For
the present analysis it will be assumed that the heat pipes are
perfect conductors and that the technique of bonding them to the
wall provides negligible thermal resistance between the pipes
and the wall. They thus provide a periodic distribution of iso-
thermal rings along the cylinder. Admittedly, present tech-
nology frequently produces only a poor approximation to the Sketch (d)
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assumed ideal conditions. However, it may be hoped that the present research and
development effort in this field will result in significant advances in the art during the

next few years.

The heat pipes acquire the average temperature of the cylinder. For most of the
sunlit half, heat is delivered to the heat pipes, flowing along the wall toward them; and in
the shaded half, heat is removed from the heat pipes, flowing along the wall away from

them. Correspondingly, along any longitudinal cylinder element there will be a periodic

variation of temperature, about as shown in sketch (e). The short arcs in the sketch are

tSHeat-pipe locations
X HapeShaded area

Sketch (e)

approximately parabolic. (In the one-dimensional case with uniform addition or loss of

heat by radiation, the governing differential equation is d = Constant, for which the
dx2

variation of T with x would be exactly parabolic.)

Two modifications to the analysis result:

(1) Corresponding to the longitudinal heat flow in the wall, the rate of loss of heat

from a cm2 of wall is -CT a
2

where, as before, the factor CT is the product of wall
ax2 '

thickness (T cm) and conductivity (C cal/cm-sec-K). The parabolic variation gives

AT= (AT)m - (x)2]

from which

a2 T 2 (AT)m

ax2 ~ p2

where

p half the spacing between heat pipes

AT wall temperature minus heat-pipe temperature

ATm value of AT midway between adjacent heat pipes

x longitudinal distance from midway point, cm
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Since the range of variation of T is small, the parabolic distribution of T implies
00

a parabolic distribution of z (= aT 4
) also. Let zi = ao + an cos nO be aT4 on the

1

circle that is midway between adjacent heat pipes, where a0 , the average value of zi,

is also the heat pipe value of aT4 . Then ATm corresponds to E an cos ne; or, by the

relationship derived in the preceding section,

00

AT zm 1 an cos nO

4T-3 41/4a03/4 

The conduction heat flow out of the wall toward the heat pipes, per cm 2 , is then

2 / -2 ATm C00

-CT -= _CT 2p C / /-Ca-~-2= 2 = 2p2 1/4a 0 3/4 1 an cos nO

(2) Since the average height of a parabolic arc is two-thirds of its maximum height
00

(sketch (f)), the average z along any infinite longitudinal element is a 0 + 3 an cos nO.
1

This average value will be used in the term for the radiation received

at 0 from the inside of the cylinder (a modification of eq. (2)). Sketch (f)

It must be noted that the assumed fairly small heat pipe spacing is necessary for

the preceding discussion to be valid. For example, if the spacing is very large, the lon-

gitudinal temperature distribution would no longer be approximately parabolic, so that

neither the two-thirds factor nor the expression for a2 T/ax2 would be valid.

Heat-balance equation and solution.- The heat-balance equation, including the terms

for insulation, circumferential conduction, and longitudinal conduction to heat pipes, is,

for the circle that is midway between adjacent heat pipes,

k(Zo - Zi) + ao -2 -1 an cos nO

4n2 - C-1

=a + an cos nO + C2 4 n2ancos n+ 21 34 an cos nO (16)

4r2 1/4a0374 n 2 1/4 1

where the first term on the left is the heat transmitted in through the insulation; the

second and third terms on the left represent the radiation received from the inside of the

cylinder; the first two terms on the right represent the heat radiated away into the inside

of the cylinder; the third term on the right is the heat conducted away circumferentially;

and the fourth term on the right is the heat conducted away longitudinally.
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As before, the factor (zo - zi) is replaced by the expression in equation (12); and

the Fourier coefficients are then determined by the procedure previously described.

They are

cfb
aO IrE

kab

a 1 -~ ~k+E
al= (1

2 + 2 + kE Cr Cr
3 x 3 k + e 4r21a/4 a0 3/4 2P201/4 ao3/

2 kab
~a

2
-~ k+E

31( 2 + 2 + 4Cr + CT Cr
3 x 15 k + e 4r2c1/4a

0
3/4 2p2,1/4ao3/4

(17)

n1 2 kb
--( 1 2 kk+e

(n2 7r 2 kE + n2Cr Cl ]
(n2 1 3(4n2 -

1
k+E e 4r2a1/4a

0
3/4 2p2+1/4a

0
3/4

(n even)

a 3 = a 5 = a 7 = . = 0

These coefficients reduce to those for the case without heat pipes (coefficients (15)) if the

last term in the brackets is deleted and if the factor 2/3 is changed to 1. If the fourth

term in the brackets is also deleted, the coefficients (14) are obtained. Finally, if k is

made infinite, the coefficients (8) are obtained.

Calculated Results

A number of circumferential temperature distributions were calculated by means

of the sets of Fourier coefficients (14), (15), and (17). As previously mentioned, for all

cases in which heat conduction in the wall was considered, the product of wall thickness

and conductivity was taken as 0.05.

The cylinder radius r was taken as 150 cm for most of the calculations, but a few

calculations were made for a radius of 15 cm. The effect of circumferential conduction

(given by the term containing r in the coefficients (15) and (17)) is not important for

r = 150 cm; but since r occurs as the inverse square, the effect rapidly increases in
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importance as r decreases. The heat-pipe spacing 2 p was taken as 40 cm for all

heat-pipe calculations. The isothermalizing effect of heat pipes also varies inversely

as the square, as indicated by the p2 factor in the last term in the brackets in the

coefficients (17).

Figure 3 shows circumferential temperature distributions calculated with circum-

ferential conduction taken into account. The cylinder radius was taken as 150 cm for all

cases but one. For the insulation, k values of 0.001, 0.0025, 0.025, and o were used
(k = o corresponds to no insulation). In figure 3(a), for k = a, a curve from the zero-

conduction results of figure 1 has been added (the dashed curve). It is seen that the cir-

cumferential conduction has relatively little effect for a large cylinder (r = 150 cm),

although it does serve to wash out the break at 0 = 90 ° . On the other hand, when r is

only 15 cm, the temperature-equalizing effect of conduction is seen to be very pronounced,
since the circumferential variation is now only half as much as when r = 150 cm.

Comparison of the curves in figure 3(a) with the upper set in figure 3(b) shows that

even a little insulation will greatly increase the temperature uniformity. For k = 0.025,

corresponding to only one or two layers of aluminized plastic sheet, the variation was

reduced by a factor of about 15. For k = 0.0025, the variation is only a few tenths of a

degree.

Comparison of the three sets of curves in figure 3(b) shows that for a given a(

and e, the temperature variations are approximately proportional to k. In fact, for

the two smallest values of k (the lower two sets of curves), the proportionality to k

is almost exact.

The curves in figure 4 show the further improvement in temperature uniformity

that can be obtained with heat pipes. The upper set of curves, for the zero-insulation

case, shows improvements by factors of 1.9 to 3.3, compared with the curves of fig-
ure 3(a). The lower set, for k = 0.0025, shows improvements by factors of 2.3 to 5.7.
As already indicated, reducing the heat-pipe spacing would cause rapid further improve-

ment. It must also be noted that these results in figure 4 are for the circle midway

between adjacent heat pipes. The average variation around the cylinder is only about
two-thirds as much.

Calculations were also made for k = 0.025 and 0.001 for the heat-pipe case. The
results are not shown, since the curves are again simply proportional to k, and may be

derived from the results shown in figure 4 for k = 0.0025.

The quantities of heat transported along the heat pipes turn out to be very small.

For example, for the middle curve of figure 4(b) (ac = 0.25, e = 0.85, k = 0.0025,

ATm = 0.052 K), the heat delivered to each heat pipe between 0 = 00 and 0 = 700 (and
withdrawn from each heat pipe between 0 = 70 ° and 8 = 1800) is only 0.061 cal/sec.
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Accordingly, the original assumption that the heat pipes are essentially isothermal seems

to be justified. The other assumption - that the bonding between the heat pipes and the

wall has negligible thermal resistance - seems, with present technology, to be more

questionable.

FINITE-LENGTH CYLINDER

The preceding analyses of the infinitely long cylinder show how to calculate the

degree of circumferential temperature nonuniformity for given wall, insulation, thermal

coating, and heat-pipe spacing. The present section will consider the longitudinal tem-

perature variation along a cylinder of finite length. It will be first assumed that, by

means of insulation and heat pipes, the circumferential temperature variation has been

made negligibly small or, at least, has been made so small that it can be considered

independently of the longitudinal temperature variation. That is, the internal wall tem-

perature will be considered as a function of longitudinal location only. Some discussion

and analyses of circumferential temperature variation will be given later.

Since circumferential heat flow is not considered for the present, it will be con-

venient, in the analysis, to take the cylinder radius as unity.

Net Heat Flow Through the Insulation

In the preceding analyses the average value ao of aT4 , either outside or inside

the infinite cylinder, was cyb/7rE. In a finite-length cylinder, the internal oT4 is

everywhere less than this value because heat is lost by radiation out of the open end.

Correspondingly, the average external oT4 at any longitudinal location is less than

ab/7TE, because the outside is the source of this lost heat and is continuously supplying

it through the insulation. The symbol ao will be retained, for the present, for ab/1Te,

and the symbol a will be used to represent the local circumferential average oT4 of

the outermost layer of insulation. The local circumferential average oT4 of the cyl-

inder wall will be designated z.

It is apparent that the local rate of heat supply through the insulation is propor-

tional to a - z. However, it is also proportional to ao - z. The proof follows: At any

given longitudinal location along the (unit-radius) tube, the heat-flow equation for a cir-

cular band l1cm wide is

2ab = 27rae + 27r(a - z)k

where the left-hand side represents the rate of absorption of solar heat by the outer layer

of insulation; the first term on the right is the rate of radiation of heat away from the

outer layer; and the last term is the rate of transfer of heat through the insulation to the

inner cylinder wall. Solving for a gives
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a ab + 7rkz

7r(k + e)

Substituting this expression for a in the term 27Tk(a - z), which is the rate of heat
transfer in through the insulation, gives

27Tk(a - z) = 27rk LIb(k + E)7z_

= 27k¢(k + c)Z1= 2 7TkF 2b - 6z

L (k + E) J

= 27c(ao - z) (18)

where c is kE . Thus, the rate of heat transfer in through the insulation is propor-

tional to ao - z, as was to be proved. The product c(ao - z) is the average heat trans-
ferred in per unit area at that location, and will be used in this form in the subsequent
analyses.

The Exponential View Factor

Given a unit-radius cylinder (sketch (g)) with its inner surface perfectly black, and
given two elemental circular bands of this surface,

one at the origin, the other at x, the fraction of the

total radiation emitted from the first band that is I
transmitted to the second band, per unit width of r = 1
the second band, is (ref. 12) 0 x

1 _ lxl(x2 + 6)] Sketch (g)

2 (x2 + 43/2

It was shown in reference 12 that this view factor is roughly approximated by the simple

exponential expression I e-lxl; and that use of the exponential expression greatly simpli-
2

fies the analysis of radiation exchange within a cylinder.

The two functions are compared in figure 5. The areas under the two curves are
the same. The expressions have the same values at IxI = 0, 1.106, 4.608, and o. At
large Ixl, the exponential curve lies below that for the perfect radiator. One might hence
argue that the exponential curve is the more representative of actual mat black finishes,
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which tend to become reflectors for radiation received at glancing angles. On the other

hand, the exponential curve lies above the curve for the perfect radiator for x between

1.106 and 4.608, and hence, in this respect, it represents a thermodynamically impossible

surface finish. Of course, if the exponential curve is uniformly lowered by an emissivity

factor of, say, 0.85, it would lie nearly completely below the curve for the perfect radia-

tor, so that this objection would not apply. However, 0.85 is considerably below the emis-

sivities of available black finishes. A better approach might be to use a sum of two or

three exponentials (for example, 0.605e
-
1 141xI - 0.105e

-
3.421x1) to provide a better

approximation to the curve for the perfect radiator, as was suggested in references 12

to 15. The mathematics remains tractable, although, of course, it becomes much more

cumbersome. However, the slightly improved analytical accuracy attainable with such

modifications would have little practical significance for the present study and would not

justify the greatly increased computational effort. Accordingly, the simple exponential

view factor 1 e-IXI will be used in the present analyses. Some additional analytical
2

justification, other than the similarity of the two curves of figure 5, will be given later.

A practical consideration is simply that the paint and insulation characteristics would not

be so accurately known or so accurately uniform and reproducible that extreme effort to

achieve analytical accuracy is warranted. Furthermore, since the assumed configuration

does not take into account the presence of the secondary mirror and its supporting struc-

ture, the curvature of the primary mirror, or the hole in its center, it would hardly be

reasonable to insist on ultimate accuracy in the analysis.

The Simple Open Tube

Consider an insulated, open-ended, internally black tube of unit radius and length

21, with its axis normal to the solar rays. (See sketch (h).) For present purposes, it

kMirror

x = -x= x= x= 

Sketch (h)

represents an idealized telescope tube of length 1 with a perfect flat mirror at one end

(x = 0). The mirror reflects the inside of the tube and thus, in effect, provides for the

analysis a tube of length 21 with both ends open.

Use of the exponential view factor provides the following integral equation for the

heat balance of a unit area at any longitudinal location x:
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z(x) = c[aO - z(x)]0 + 2 z(Q)e -xd + ()exd~ (19)

where 5 is a dummy variable corresponding to x.

The term on the left represents the heat radiated away from the inner surface at x,

per unit area; the first term on the right represents the heat received at x, per unit area,
from the outside, through the insulation (see eq. (18)); the first integral represents the
radiation received from the part of the wall that lies to the left of x; and the second

integral represents the radiation received from the part of the wall that lies to the right
of x.

Transfer the first term on the right to the left-hand side of the equation to get

(1 + c)z(x) - aoc- 2. *+ 2 i (19a)

Differentiate with respect to x to get

(1 + c)z'(x) = - 1 z(Q) e-Xd~ - 1_( + z( ) eX-d~

Differentiate again to obtain

1 1 1
(1 + c)z(x z(x) + zc)) exd z(x) + -2 z(Q) et-Xd 

2 2-l z 2eX-~d

The two integrals on the right are now the same as the original ones in equation (19a);

therefore, they may be replaced by the left-hand side of that equation. Thus, a differ-

ential equation is obtained:

(1 + c)z" = -z + (1 + c)z - cao

which simplifies to

(1 + c)z" = c(z - ao)

the solution of which is

z = a0 - A cosh fx (20)

where f = \c/(1 + c) and the coefficient A is to be determined. Since z is obviously
symmetrical with respect to the origin, there will be no sinh fx term in the solution.
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In order to determine A, substitute z from equation (20) into equation (19a) and

perform the integrations for some convenient value of x - say, for x = 0.1 Thus,

1 f 1 A h
(1+ c)(aO - A) - aOc = (aO - A cosh fx)etdb + 2 i a - A cosh f()e-~d

where the two integrals are obviously equal. The integration proceeds without difficulty

and provides a simple linear equation for A, the solution of which is

2a
0A 2a: (21)

L-+ -
1+f 1 -f

Putting this expression for A into equation (20) finally gives the equation for z as a

function of the distance in radii along the cylinder x. Since z = oT4 , the temperature T

along the cylinder is then easily obtained.

Calculations were made of the temperature distribution along the cylinder for the

following listed values of the basic parameters:

1: 6, 8, 12, 20 radii

(x: o. 0.25 0.4

e: 0.85J, 0.85 J, 0.4

k: 0.001, 0.0025, 0.025, o

In all cases the cylinder axis was assumed to be normal to the solar rays, the shaded half

receiving no external radiation input at all.

The calculated results are shown in figure 6. It will be seen that for the uninsulated

cylinders (k = -o), the temperatures remain nearly equal to those for the infinitely long

cylinders, except near the open end, where they drop sharply. For the insulated cylinders,

the temperatures even at x = 0 (that is, at the mirror) are well below those of the cor-

responding infinite cylinders, and they drop steadily toward the open end.

The Effect of a Gray Internal Surface

Any real surface has an emissivity less than 1. The radiation from a surface is

thus everywhere less than the local z. Furthermore, where this emitted radiation

encounters some other part of the wall, it is only partly absorbed, and the remainder is

reflected; and where the reflected part meets the wall it is again only partly absorbed,

1 An alternative approach is to perform the integrations without giving x a par-
ticular value, and then equate coefficients. In more complicated problems, however, this
approach may lead to much difficult algebra. The method here used, although perhaps
less elegant, is, at least, straightforward.

23



with the remainder reflected; etc. Although this infinite sequence of partial absorptions

and reflections would seem to greatly complicate the analysis, the problem is readily

solved by the type of method indicated in reference 16. The method will be illustrated

for the case of the finite-length cylinder that was treated in the preceding section.

Suppose that the internal surface has an emissivity of ei and a reflectivity of Pi

(where ei + pi = 1). Two simultaneous equations are set up corresponding, respectively,

to the following two statements:

(1) The rate u at which radiation leaves a unit area equals the rate at which heat

enters that unit area through the insulation, plus the rate at which radiation arrives at

that unit area from the rest of the internal cylinder surface.

(2) The rate u at which radiation leaves a unit area equals ei times the local z

plus Pi times the rate at which internal radiation arrives at that unit area.

The two statements are translated into the following two equations, respectively:

1 1
(1) u(x) = c[aO - z(x + u(T) e-Xdg + u(Q) exd (22)

(2) u(x) = eiz(x) +Pi X u(Q) et-Xd5 + 2 u(Q) eX-d (23)
2 -1 2 

If the first equation is multiplied by Pi and subtracted from the second equation, the

integrals cancel and a simple algebraic relation between z and u is obtained:

u(1 - Pi)= iZ - Pic(aO - z)

from which

u
e

i + Pica0 (24)
e i + Pi c

Substituting this expression for z into equation (22) gives

(1 + g)u(x) - agg =2Xu(i) etd +2i(5

where
ce i

g -ei + Pi c

This equation is identical in form to equation (19a). It is solved similarly and has a

similar solution:

24

C



u = a
0

- A cosh hx

where h = 4g/(1 + g). The coefficient A is evaluated by the same method as before:

A= 2a0

e-hl eht
l+h 1 -h

Finally, substituting this derived u into equation (24) gives z, from which T can be
obtained.

Some calculations were made for a finite-length cylinder having an internal surface
emissivity of 0.85. The other conditions were: a( = 0.25; e = 0.85; k = 0.0025, 0.025,

and o; 1 = 8. The results (not shown) could be compared with the results of the previous
calculations (fig. 6) for the cases in which all the parameters were the same except that
e

i
was 1. As expected, the wall temperatures were found to be slightly higher than those

for e i = 1. However, the differences were very small, ranging from a few tenths of a

degree near x = 0 to a maximum of nearly 10 at the open end. Furthermore, the emis-

sivities of actual mat black surfaces would be considerably higher than 0.85. Accordingly,
use of unit emissivity was considered to be satisfactory for present purposes.

Use of the Exact View Factor

It may be of interest to review a brief study of a different approach to solving the
simple open tube: The exact view factor (see p. 20) was used in the integral equation,

but z(x) was represented by a three-term power series, p + qx2 + rx4 . Equation (19a)
is thus replaced by

(1 + c)(p + qx2 + rx4) - a 0 c = + (p + rq (x- [ 2 +6 + .

Integrating analytically results in an algebraic equation in p, q, r, and x. Substituting

three different values of x - say, x = 0, 1/2, and I - gives three simultaneous linear

equations for p, q, and r, the solution of which gives the power series for z. It is
here supposed that the three-term series should provide a fairly accurate representation
of z for a short tube, so that this method should give a fairly accurate result for such a
tube.

Some calculations for a short tube (1 = 6) showed excellent agreement with the cor-
responding results in figure 6. For 1 = 8, the agreement was not quite so close, with a

maximum discrepancy of 1.50 (at x = 8, with a = 0.25, e = 0.85, and k = 0.0025). For
still larger 1, the disagreement became progressively worse, and the results became
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physically unreasonable (as, for example, when the temperatures near x = 0 exceeded

those for the infinite tube).

The three-term series is obviously inadequate to represent z(x) for the longer

tubes. Although the representation could be improved by adding terms in x 6 ,x 8 , . .. ,

the amount of algebra would quickly become excessively cumbersome. If a very exact

solution is needed, it would then be easier to get access to a large computer and use some

available program for numerically solving such integral equations.

The fact that good agreement was found for the shorter tubes (1 - 8), where the

three-term series is reasonably adequate, indicates that the simple exponential view fac-

tor is basically satisfactory for present purposes.

Circumferential Temperature Nonuniformity

For the infinitely long cylinder, with or without heat pipes, figures 3 and 4 showed

the circumferential temperature variation for several combinations of insulations and

thermal-control coatings. For a cylinder of finite length, the circumferential variation

will be greater, mainly because of the reduced internal temperatures. At the reduced

temperatures, the internal radiation is weaker and less effective in equalizing the internal

temperatures; accordingly, the temperature difference between the subsolar area and the

shaded area must increase before equilibrium is established. An additional, related

reason, especially for the region near the open end, is that the radiation received from

any longitudinal element of the cylinder is less than it would be if the element were infi-

nitely long.

The following reasoning was used in estimating the increased circumferential non-
00

uniformity: In equation (13), the term - cos n9 represents the radiation

n=O 4n 2 -1
received at any 0 from the entire infinite cylinder. If the cylinder is of finite length,

this term would be too large, and should be reduced by some factor s. Furthermore,

since the longitudinal distributions of T (or of z) along the elements of the cylinder

would be very similar for all the elements, the factor s should be approximately the

same for all points around the tube at the same longitudinal location; that is, it may be

written as s(x). Accordingly, for the finite-length cylinder the term in the equation
00

should be changed to -s(x) 2 n cos nO. The evaluation of s(x) from the local
0 4 n 2 _ 1

z(x) (the circumferential mean aT 4 given, say, by eq. (20)), and its use in estimating

the circumferential temperature nonuniformity are outlined in the following sections.
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Without heat pipes.- Equation (13) is modified by multiplying the summation on the
the left-hand side by s, as just stated. After the term for circumferential heat conduc-

tion is added, the analysis proceeds precisely as before and yields the following Fourier

coefficients, which are now functions of s (the subscript f has been used to indicate

that the series is for a finite-length tube):

T1 - s) e k + E]

kab

glf- s E
+ k

E+k

+3 + e-' + 2 1/4 3/4)

(27)

2kab

an f= (-1)2 +k (n even)
(n2 1)7T + s + Ek + nCT

l 4n 2 - 1 e + k 4r2ol/4ao3/4/

a3, f = a 5 ,f = a 7, f = . . = 0

(For s = 1, these coefficients reduce to the coefficients (14) for the infinite cylinder.)

The coefficient ao,f is still the circumferential mean z i (or aT 4 ), but it varies

with s.

As an example of the use of these equations, suppose it is desired to find the cir-

cumferential temperature distribution at x = 8 radii on a cylinder of length 1 equal

to 12 radii, for a = 0.25, E = 0.85, and k = 0.0025. From figure 6, the mean tempera-

ture T at x = 8 is read as 128 K, from which the local mean zi is r x 1284=

3.64 x 10 - 4 . Putting this value equal to ao,f in the first of equations (27) and solving

for s gives s = 0.981. With this value of s, all the other Fourier coefficients (27)

may then be evaluated, whence the circumferential distribution of z
i

and hence of T

can be determined.

A number of circumferential distributions were calculated, but they are not pre-

sented here. Instead, the difference, Tmax - Tmin, between the maximum and minimum

temperatures around the circle, as obtained from these calculated distributions, are

plotted as functions of T in figure 7 for a = 0.25, e = 0.85, and k = 0.025 and 0.0025.

It is seen that with decreasing temperature, Tmax - Tmin increases rapidly. Thus,
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for the preceding example, with T = 128 K, Tmax - Tmin is 1.4 K, whereas for the

infinite cylinder (T = 219 K), Tmax - Tmin is only 0.33 K. For the poorer insulation

(k = 0.025), the values of Tmax - Tmin become so large at the lower temperatures

that the basic assumption (the simple modification of eq. (13)) is no longer accurate,

so that the large derived values of Tmax - Tmin must be considered as only rough

approximations.

With heat pipes.- The preceding analysis can be further modified for the case of

the cylinders with heat pipes. One first modifies equation (16) by multiplying the second

and third terms on the left by s. The Fourier coefficients are then determined as

before:

ab

Tl - s) e k +e

kozb
E +k

+ 9- + ek T + +
9 E+k 4r22l1/4a03/4 2p2 1/4a03/44r a ao 2 C )

(28)

n-1 2kcab

anf = (_1)2 2s 2

3(4n 2- ) e + k 4 434 2p21/4a3/4

(n even)

a 3,f= a5 f=a 7,f=. .=0

The subsequent treatment is the same as for the case without heat pipes.

Calculations for a few cases showed that the increase in Tmax - Tmin over that
for the infinite cylinder was relatively small. Whereas for the calculated cases without

heat pipes, Tmax - Tmin increased by large factors (up to 15) relative to the values for

the infinite cylinder (fig. 7), calculations for the comparable cases with heat pipes showed

increases of only about 25 percent. Thus, the isothermalizing effect of conduction to or

from the heat pipes remains the dominant factor. Calculations for a similarly insulated

and painted 15-cm-radius cylinder without heat pipes showed that also for that case the

isothermalizing effect of conduction restricted the increase to only a few percent.
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Use of a Heated Isothermal Collar To Provide

Longitudinally Uniform Temperature

Basic equations.- The sketch shows again an open-ended tube, except that near the

end, along a section between x = m and x = n, the wall is maintained at a slightly ele-

vated uniform temperature by means of heat input from some external source. We sup-

pose, for the present, that the tube axis is normal to the sun's rays and that the insulation

is uniform. Along the isothermal section, let oT4 = q; and along the inner and outer

sections, where the temperatures, in general, are not constant, let oT4 = z(x) and y(x),

respectively. (See sketch (i).)

I olT4 = z(x) = q = y(x)

-I -n -m 0 x m n 1

Sketch (i)

The determination of z(x) and y(x) involves the solution of two simultaneous

integral equations. The procedure will be only outlined, since it is not very different

from what has already been presented. The equation for z(x) is

z(x) = c[aO - z(x)] + m z(Q) ex-~d~ + 2 n qeX-'d~
2 3 gx) d

1 5 1 n y()ex55 r-q -m qe _xd +21 y() ex-d~ + Z y(Q) e-xd5
2 n 2'1n -l

(29)

When this equation is differentiated twice with respect to x, it yields the differential

equation

d2 z c

dx 2 1 + c (

Since z is continuous at x = 0 and also must be symmetrical with respect to x = 0,

it must be of the form

z = ao + A cosh fx
(f T- )

(30)
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The integral equation for y is

-ny(x)= c[a 
0- y(xyQ)] x ) e xd + y() exdt

+2 r qe-Xdt + 2 qe -Xdt + z(t) eXd (31)

After differentiating twice, it yields

= c -(y ao)

Although y is symmetrical with respect to x = 0, it is not defined over the inner region
(x = -n to n); hence, the solution must be assumed in the more general form

y = a0 + Beflxi + Ce-flxl (32)

In order to solve for A, B, and C, set up three simultaneous equations:

(1) Substitute expressions (30) and (32) for z and y into equation (29) and per-
form the indicated integrations for x = 0.

(2) Similarly, substitute expressions (30) and (32) into equation (31) for y and per-
form the indicated integrations for x = n and for x = 1.

The three simultaneous equations in A, B, and C that are thus derived are here set
down since this configuration is of special interest:

From z(0),

Ai(f-1) m e-(f-1)m]> B~e(f- 1);_ e(f -1) n e
A f-1 f+1 (fJ -i (f -l) -(f+l)n -(f+1)l

a 0 (em + e-1 + e-n) + q(e- n - e - m ) (33)
From y(n),

A e-n[sinh(l + f)m sinh(1 - f)
AJ Lin f 1m-f

B coshn [e(f-1)n e(f 1)] (1 + c)efn)

+ C cosh n (l+f)n _ e-(+f)] - (1 + 

= a(e-nsinh n + e
-
l cosh n - e-nsinh m) + qe-n(sinh m - sinh n) (34)
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From y(i),

Al[sinh(l + f)m sinh(l - f)m

L -l+f e+ -f f

(f-1)n _e(f-1)1 e(l+f)/ _e(l+f)n
+ B 2 e( ) + e( +f) ) - (1 + c)e(l +f)

re-(l+f)n e-(l+f)l e(1-f)l _e(1-f)n+ C e _ -+e1(+ c)e-f)
2(+. + CL 2(1 - f) - (1 +c)e(

= ao(cosh I - sinh m + sinh n) + q(sinh m - sinh n) (35)

For a given geometry and set of parameters (m, n, 1, ao, c (hence f), and q), one

can evaluate the coefficients of A, B, and C in these three equations and then solve

simultaneously for the numerical values of A, B, and C.

Uniform-temperature inner section.- A more interesting problem is to set A = 0
and solve for B, C, and q from equations (33), (34), and (35); that is, determine the

temperature (since q = aT4 ) of the heated collar that will provide a uniform temperature

between x = 0 and x = m. (The uniformity corresponds to having set A = 0.) For

this case, since equation (30) simply reduces to z = aO (0 < x < m), the uniform tempera-
ture is the same as would exist in a similarly painted infinite cylinder. With B, C,

and q thus known, calculation of the heat that must be put into the collar in order to keep
it at the required temperature is straightforward. At any longitudinal location on the

heated collar, the required heat input per unit area is the heat transmission outward

through the insulation c(q - ao) plus the heat radiated inward q minus the heat
received by radiation from the inside of the cylinder. This last item must be determined

as the sum of exponential type integrals along the five sections of the cylinder (-I to -n,

-n to -m, -m to m, m to n, n to 1, where the integral from m to n must be
in two parts - m to x and x to n). The derived expression for the required rate
of heat input per unit area must finally be integrated over the collar.

Calculated results.- A number of calculations were made of the temperature dis-

tributions and of the corresponding heating powers for a tube of length 1 = 12 radii with
a uniform-temperature collar between x = 6 and x = 8 (that is, m = 6 and n = 8).

The results are shown in figure 8. (Fig. 8(a) is for a = 0.25, e = 0.85, k = 0.0025; and

fig. 8(b) is for a = 0.15, E = 0.85, k = 0.0025.) The most significant numerical results
are given in the tables in the figures. (The results for total heat power input to the collar

are for a tube radius of 150 cm.)
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The difference between the wall temperatures at x = 0 and at x = 6 may be taken
as a measure of the temperature uniformity in the 6-radius-long section between the
mirror and the collar. For the "design conditions" (the bottom lines of both tables), the
temperatures at x = 0 and at x = 6 are equal and about 20 below the collar tempera-
ture. In the worst case (the third line of the table in fig. 8(a)), the telescope was assumed
to be completely in shadow, or alined with the sunlight, so that there was no external radi-
ation input. For this case, the temperature at x = 6 is 2.40 higher than that at x = 0,
and is 3.60 cooler than the collar.

The 300- to 400-watt input required to maintain the collar at the specified tempera-
ture seems relatively modest; and extending the length of the shield (the section from n
to 1) would reduce it to lower values. Furthermore, relatively small amounts of addi-
tional power applied in the section between the mirror and the collar could maintain a uni-
form and constant temperature along that section regardless of the tube orientation rela-
tive to the sunlight.

The heat source for the collar is a rather challenging design problem. One might
use some arrangement with variable-conductance heat pipes leading from an isotope power
unit or from solar-heating panels provided with some phase-change material to furnish
heat during the shadow phase of the orbit. In any case, some small additional electric
power would seem to be necessary if very fine control of the temperature is needed.

Tube With Nonuniform Insulation and Paint

In all the preceding analyses and examples, the thermal-control coating and insula-
tion blanket, as characterized by a, e, and k, were assumed to be perfectly uniform
along the tube. Actually, as previously indicated, the thermal conductance of a super-
insulation blanket is sensitive to relatively minor irregularities in construction or
application - for example, the closeness with which the layers are packed. Also, differ-
ent batches of paint might show some variations, especially in the rate of darkening dur-
ing exposure to the ultraviolet and particle radiation in space. Some calculations were
therefore made to determine the effect of changing the values of a and k over a given
length of an infinite cylinder normal to the solar rays. The simplified geometry was
considered to be adequate for demonstrating how the effect of an irregularity is washed
out along a finite cylinder.

The geometry and definitions are indicated in sketch (j). The subscript 1 is used
to indicate properties along the variant section between x = -l and x = 1; the subscript
0 is used to indicate the properties of the remainder of the cylinder that extends to
infinity in both directions.
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The mathematical analysis will not be given, since it is similar to the analyses of
the preceding problems. The solutions are of the form

z l = a
1

+A cosh f1 x (Ixl <1)

z
0

= a 0 + Be (Ixl > 1)

where

u0 b a i b

ao = TE
0

, al = E1

fo COs fl = 1 + c

As before, A and B are determined by solving two simultaneous equations, as for

Z1 (0) and z 0 (l).

Figure 9 shows some of the calculated temperature distributions. For all cases,
s

0
was taken as 0.15 and a 1 was taken as 0.25. The difference is considerably more

than should exist in an actual case. The value of E was assumed to be 0.85 for all
cases, since E does not change appreciably from one batch of paint to another and is
not much affected by radiation. In some cases, the value of k

I
was taken as twice the

value of ko; in others, k1 and ko were equal. A considerable range of t values
was used.

For the uninsulated conditions, the curves show large discontinuities, the tempera-
tures rapidly approaching those for the infinite cylinders at short distances from the dis-

continuities. For all cases in which there was any insulation at all, the effect of the

changed a or k is distributed over a considerable length of the cylinder. There is
a small discontinuity (0.10 to 10) at the edge of the variant section, which would be some-
what smoothed out in a practical case, not only because of wall conduction but also

because changes in insulation characteristics would probably be fairly gradual rather
than discontinuous. Admittedly, the a and k variations used in these examples are
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not very realistic. The a variation is probably unreasonably large; and the k varia-

tion, although not exaggerated, would probably be randomly distributed. Nevertheless,

it seems clear that one cannot hope to predict temperatures and temperature distributions

very precisely for a range of conditions simply on the basis of nominal paint and insula-

tion characteristics or on the basis of model tests. Precision temperature control will

hardly be achieved without some active controls such as are referred to in the preceding

section.

On Maintaining Uniform and Constant Temperature

Thermal distortions might occur if the telescope temperatures are allowed to

change, not only because different parts of the telescope may have different thermal-

expansion coefficients but also because the different parts would change their tempera-

tures at different rates. It seems advisable, therefore, to strive not only for uniformity

but also for constancy of temperature.

It was previously shown that a heated collar near the open end of the telescope tube

can, under ideal conditions, provide a uniform temperature along the main part of the

tube (between the mirror and the collar). The uniform temperature in this case is that

which would be acquired by a similarly painted and insulated infinite cylinder at the same
orientation relative to the incident radiation. If the orientation of the tube relative to the

radiation is changed, a different collar temperature could then provide the same mean

temperature along the tube; however, the temperature will no longer be uniform along the

tube, although the nonuniformity may not be very large. Thus, a heated collar alone can-

not suffice to maintain the tube temperature both uniform and constant as the orientation

(hence the radiation input) is varied.

One approach to uniformity and constancy might be to use the highest temperature

condition (the tube axis normal to the solar rays) to define the design temperature, and

add additional heat along the tube to maintain this uniform temperature for all other

orientations. For k = 0.0025, this additional heating for the 150-cm-radius tube would
be only about 50 watts for the worst case (no external radiation input at all, as with the

tube axis parallel to the solar rays).

Longitudinal heat pipes.- A method of maintaining a more uniform temperature

along the tube would be to provide a set of longitudinal heat pipes. If, in addition, these

longitudinal heat pipes were thermally connected together, they would also contribute to

improving the circumferential temperature uniformity. In reference 4 it was suggested

that a shallow drumlike vapor chamber might be located just under the mirror, and that

the longitudinal heat pipes might be brought into the vapor chamber, as indicated in

sketch (k). Such an arrangement would provide not only a uniform radiation environment

for the bottom of the mirror, but would also insure that the temperature of this radia-
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tion was very nearly the same as that of the telescope tube itself. However, actual con-

struction of a flightworthy vapor chamber of this type and size with many inserted heat

pipes seems a rather formidable undertaking. Perhaps merely bonding the heat pipes to

the outer top or bottom surface of the vapor chamber would be adequate.

Balloon-type enclosures.- In reference 1 it was suggested that the thermal problem

could be eased by enclosing the entire telescope in a balloon. The thermal-radiation

environment within such a balloon should be nearly uniform and isotropic and should also

be nearly independent of orientation relative to the external radiation, provided the inner

surface of the balloon is nearly specular. Reference 17 contains some space-simulation-

chamber studies of the radiation inside a model balloon irradiated by a solar simulator.

On the whole, the data tend to confirm the prediction. For example, in one case, the

external surface had a mean a/e ratio of 1.15 (for which the mean

internal temperature was 290 K), the internal surface was lightly

anodized, and the outer surface of the "telescope tube" was specular.

The temperature of the radiation striking the outside surface of the

telescope tube (sketch (i)) was found to be uniform to within about

±5 K for a range of orientations. This uniformity, considered in

terms of (radiation temperature)4 , is over 20 times better than for Sketch (1)

an unenclosed tube irradiated from one side by sunlight. Furthermore, the mean temper-

ature of the radiation incident on the tube was, as expected, almost independent of the

orientation of the tube relative to the solar-simulator beam.

Thus, the balloon could be very helpful in providing relatively constant and circum-

ferentially uniform temperatures. Furthermore, if the balloon were extra large, with a

diameter considerably exceeding the telescope length (sketch (m)), the longitudinal non-

uniformity, with decreasing temperatures toward the open end (as
shown in fig. 6), could also be greatly reduced. (Such a spacious

volume around the telescope was probably intended in ref. 1; in

fact, it mentioned a set of concentric balloons.) More extreme uni-

formity and constancy would require additional complexity, such as

the previously discussed vapor chambers, heat pipes, heated collars, Sketch (m)

35

'Ill.



fine-control heating power, and insulation; however, the performance requirements of all

such components would now be greatly reduced.

Thus, a well-insulated telescope enclosed within an extra-large balloon and provided

with perhaps 150 watts (for the 150-cm-radius telescope) of distributed and regulatable

heating power appears to be an attractive concept. Certain inherent elements of awkward-

ness in the concept have probably prevented its serious consideration in such systems

studies as that of reference 18. For example, the balloon could not be a simple sheet,

like the Echo satellites, but would have to be sufficiently stiff, probably with internal

bracing, so that it could be readily reoriented as required. The large solar-cell panels

extended from the side of the telescope tube in the design proposed in reference 18 would

have to be located outside of the sphere, somehow attached to the bracing. A torn area,

such as might be produced during deployment, might not seriously affect the thermal con-

trol, but might let in sunlight that would be reflected around the inside of the balloon and

into the telescope. During the shadow phase, the temperature inside the balloon would

drop, so that consideration would still have to be given to means of preventing periodic

variations of telescope temperature in response to the alternating sunlight and shadow of

a low orbit.

LOCAL WALL HEATING VARIATION DURING ORBIT

If the telescope is in a fairly close orbit about the earth, it will experience alter-

nating phases of sunlight and shadow, with a period of about 100 minutes; or, if it is in a

geosynchronous orbit, it may experience daily shadow periods lasting as long as 1 hour.

The question now arises as to whether a fairly well insulated telescope would experience

any significant heat-input oscillations in response to the unsteadiness of the thermal input

to the outer skin.

Any analysis of this problem for a relatively undefined structure, and without a

thorough knowledge of the characteristics of unsteady heat flow through multilayer insu-

lation would seem to carry a rather heavy burden of assumptions. Some experiments in

a space-simulation chamber will be needed in order to procure the basic quantitative

data. For present purposes it was considered that a simplified analysis would suffice to

provide some insight into the problem.

Consider that the insulation consists of 50 aluminized plastic sheets, each

0.00075 cm thick. A "iadiation conductance" of 0.0025 was assumed, as in many of the

calculated examples. However, this value corresponds theoretically to only about

10 sheets, since the radiation conductance between a pair of adjacent sheets is about half

the emissivity of the aluminized plastic sheet, or 0.025. Accordingly, the 50 sheets were

represented, for the analysis, by 10 sheets, each five times as thick as an actual single
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sheet, or 0.00375 cm thick; and the radiation conductance between adjacent pairs of sheets
was retained as 0.025.

The temperatures of the 10 sheets, starting with the outside sheet, are designated
To, T 1 , . ., T 9 ; and the temperature of the cylinder wall is designated T 1 0 . The wall
temperature T

1 0
is assumed to be controlled to a constant value, equal to that for an

infinite tube with the given a and e oriented normal to sunlight. The outside sheet
quickly attains radiation equilibrium with the environment, so that its temperature is
assumed to be known as a function of time. One may then set up nine equations for the
other temperatures T

1
, T 2 , . . .,T9:

0.025c(T 0 4 + T 2 4 - 2T 1 4 ) = 0.00375 X 0.4 dt

0.025o(T1 4 + T 3 4 - 2T24) =-0.00375 X 0.4 d T 2

:.2or I 3dt :(34)

0.025r(T 8 4 + T10 4 - 2T 9 4 ) = 0.00375 X 0.4 dt

where the plastic is assumed to have unit density and a specific heat of 0.4.

Calculations were made for four cases. For each case, the nine temperatures
T1 , T 2 , ... , T 9 were determined as functions of time. However, only T9 (the tem-
perature of the sheet immediately adjacent to the wall) will be shown, since it deter-
mines directly the rate of radiation heat input to the wall from the outside. The calcula-
tions were made only for a subsolar area.

Synchronous Orbit

For a synchronous orbit, the subsolar area was assumed to have an outside tem-
perature T o that is constant at 396 K except for 1 hour when it is essentially zero.
The wall temperature T 1 0 was assumed to be constant at 297.4 K (corresponding to
a = 0.25, e = 0.85). Figure 10 shows the response of T9 to the 1-hour shadow phase.
Two curves are shown. The curve with the deeper dip is for 50 layers of aluminized
plastic; the other is for 100 layers. The analysis for the latter case merely required
that the factor 0.00375 in equations (34) be changed to 0.0075 (since each of the 10 sheets
is now considered to be ten times as thick as an actual single sheet).

The lag and the spreading out of the response are very apparent. For the thinner
insulation, there is essentially no response for the first 15 minutes after the beginning
of the shadow phase, the minimum is reached about 1/2 hour after the end of the shadow

37



phase, and the entire perturbation lasts about 4 hours. For the thicker insulation, the

initial lag is about 30 minutes, the minimum is less deep and occurs about 1 hour after

the end of the shadow phase, and the entire perturbation lasts about 7 hours.

Spreading the response over several hours is a useful function of the heavy multi-

layered insulation. The solar heat input to the wall of the entire telescope tube may be,

say 40 watts; so during the 1-hour shadow phase, a 40-watt-hour deficit occurs, which

must be supplied from other sources - probably electrical - if the wall temperature

is to remain constant. The fact that the response is spread over, say, 7 hours means

that an average power of only 6 watts is needed during this period. For exact compensa-

tion, however, about 20 watts would be needed for the period when T 9 is near its mini-

mum (or 32 watts for the thinner insulation).

The time between emergence from shadow and return of T9 to its normal value

(about 3 hours for the 50-layer blanket and about 6 hours for the 100-layer blanket) may

be taken as a rough indication of the time required after a reorientation of the telescope

for T 9 to attain its new equilibrium value.

Low Orbit

For the low orbit, alternating sunlight and shadow phases of 60- and 40-minute

durations, respectively, were assumed. The wall temperature T 1 0
was again taken as

297.4 K, and, for the subsolar area under consideration, the temperature of the outermost

layer To was assumed to be 396 K when in sunlight and 244 K when in shadow. This

variation, shown in the upper curve of figure 11, is obviously a gross simplification of

any actual case, but it should be adequate for present purposes. The calculations were

made, as for the preceding problem, for 50-layer and 100-layer insulation blankets.

The lower curves of figure 11 show the calculated variation of T 9 with time.

The oscillation of T 9 lags that of To by about 45 minutes for the 50-layer blanket,

and by about 75 minutes for the 100-layer blanket. The amplitude of the oscillation is

four times as much for the 50-layer blanket as for the 100-layer blanket. Thus, the

heavier blanket provides a strong damping of the oscillating input, but the oscillation of

T 9 for the lighter blanket is a fairly large fraction of the mean difference between T9

and the wall temperature T10. Furthermore, since the amplitude seems to vary

inversely as the square of the number of layers, it would probably increase rapidly with

further decrease in the number of layers.

RESUME AND CONCLUDING REMARKS

Analytical methods have been developed for estimating the temperature distribution

in a large space telescope, idealized as a simple insulated cylindrical tube, open at one
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end, and with a flat perfect mirror across the other end. Since heat transfer,-both

within the tube and through the insulation, is mainly by radiation, oT4 was taken as the
basic variable (where a is the Stefan-Boltzmann. constant and .T is the temperature).

Expressing the circumferential distribution of aT4 as a Fourier series, permitted a

straightforward determination of the. circumferential distribution; and use .of an exponenr
tial expression to approximate the view factor between circular, bands of the tube pro-
vided tractable equations for the longitudinal temperature distribution. Methods for
taking into account the effects of multilayer insulation, thermal-coating characteristics,
heat pipes, and heated collars were also developed. ... . . ,:

A few numerical calculations were made to show:the.isignificanceof :each of these
components. The cylinder radius was taken as 150 cm for most of the calculations.

Where wall conduction was involved, the wall was assumed to be of 0.1-cm-thick alumi-
num. Where circumferential heat pipes were considered, they were assumed to be 40 cm
apart. The cylinder axis was taken as normal to the solar rays, and the shadowed half
was assumed to receive no radiation input at all. These assumptions can be altered with-

out significant modification of the analytical methods.

If the tube is wrapped in a multilayer insulation, the circumferential temperature
nonuniformity can be limited to tenths of a degree. If, in addition, circumferential heat
pipes are attached, the nonuniformity can be further reduced to values of the order of
hundredths of a degree. A multilayer insulation also tends to minimize any temperature
irregularities of the tube wall due to nonuniformity of the thermal-paint characteristics
or of the insulation itself. It can also damp out time variations due to alternating sun-

light and shadow of a low orbit. On the other hand, thermal equilibrium, at which the
heat transmitted in through the insulation equals the heat radiated out of the open end of
the tube, may exist at undesirably low internal temperatures when such insulation is used;
also, there will be a large temperature drop along the tube from the mirror to the open

end. A heated constant-temperature collar near the open end of the cylinder will largely
eliminate both of these problems.

Although this paper is largely concerned with temperature uniformity of the tele-
scope, just how much uniformity is essential or desirable remains an open question. The
development of glasses (and perhaps also structural materials) with very low thermal-
expansion coefficients, and the development of means for adjusting the mirror figure
(known as "active optics") would seem to ease the thermal-control requirements. The

availability of these materials and techniques, however, would hardly justify designing
for minimal thermal control. For example, even if active optics is used, it would never-

theless be preferable if checking and adjusting the optics were required only occasionally,
rather than every few minutes. Other types of technical developments might also appre-
ciably influence the requirements. For example, the main structure between the primary
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and secondary mirrors might be a tubular framework, constructed as one continuous
heat pipe.

In any case, the purpose of the present paper is not to propose or advocate any
particular degree of temperature control or any particular means of attaining it, but
rather to present some practical analytical methods and some calculated results for a
first-approximation configuration.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., January 16, 1973.
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Figure 2.- Measured conductivities of several multilayer insulations, from references 9

and 10. Best-fit straight lines are shown for every set of data. The heavy solid line
has a slope of 3 and corresponds to a "radiation conductance" k of 0.0025 for a

1-cm-thick layer (conductivity, 4oT3 k). See line key on page 45.
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KEY FOR FIGURE 2

Construction
(layers and separators)

Alternate layers of dimpled singly
aluminized Mylar and embossed
singly aluminized Mylar

Packing density
(layers/cm)

75.5

Doubly aluminized Mylar 9.1
(perforated)- red foam

Doubly aluminized Mylar- red
foam

Embossed singly aluminized
Mylar- nylon net

Doubly aluminized Mylar-
fiber-glass tufts

Crinkled singly aluminized Mylar
(NRC-2)

Embossed singly aluminized Mylar

9.1

19.7

8.7

27.6

63.8

Symbol

I

o__
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(b) Insulated.
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Figure 3.- Concluded. .
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_ _ c -- C 1 1'1 1 I I I I I I Ia E T, K

0.40 0.40 297.44
.25 .85 219.04
.15 .85 192.78

(a) No insulation.

a E T, K
0.40 0.40 297.44

.25 .85 219.04

.15 .85 192.78

(b) Insulated, k = 0.0025.

0 20 40 60 80 100 120
Angle from subsolar point, deg

140 160 180

Figure 4.- Temperatures around infinite cylinder with heat pipes at 40 cm. Axis normal
to solar rays; radius, 150 cm; wall, 0.1-cm-thick aluminum. Temperatures are on
the circle midway between adjacent heat pipes.
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_ _ I L l I I L | I I III(a)' a ==0.4; k O.O1.

20

(

" -,(b) a =0.25; £=0.85; k = 0.001.

4 8 12 16 20
Distance from mirror, x, radii

it t 
Sunlight at 1 A.U.

I I
Figure 6.- Variation of temperature (circumferential average) along inside wall of

insulated and uninsulated open-ended tubes. Tube axis normal to solar rays.
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Figure 6.- Continued.
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Ah) a=0.25'220 E - 20
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Distance from mirror, x, radii

Figure 6.- Concluded.
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E _ X - -v _0

60 10 1 

k: 0,0025

0
60 100 140 180 220

T,K

Figure 7.- Difference between maximum and minimum wall temperatures around the

cylinder as a function of local root-mean-fourth-power temperature T (=(a0/c)l/4).

Finite-length tube with axis normal to solar rays; a = 0.25; E = 0.85; k = 0.025

and 0.0025; r = 150 cm; no heat pipes.
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0 2 4
Distance from

6
mirror,

8
x, radii

10 12

Mirror Heated
collar

Mai n-section
Main-section Collar Power input to collar

Line temperatures, K temperature, q = T4
Tc, K W/cm2 Wx= x=6 K W/cm (r= 150 cm)

- - - - 229.75 230.20 233.07 4 x 10- 3 14.06x 10- 4 398
222.60 222.75 225.42 3.5 12.12 343
219.36 221.79 225.42 3.5 13.65 386
219.04 219.04 221.69 3.268 11.21 317

No external radiation input.

(a) a = 0.25; e = 0.85.

Figure 8.- Temperature distribution along wall of open-ended tube with heated
isothermal collar. k = 0.0025.
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Distance from

6 '- 10
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(b) a = 0.15; e = 0.85.

Figure 8.- Concluded.
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Line temperature, q=oTc 
4

x=Li x=6 Tc, K W/cm2 ( = 150cm)

228.59 229.85 233.07 4 - x 10-3 14.68x-10- 4 415
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2O0P
: 200

EW
M

200

iLn

0

) j ao0 U.l ; al U.2 ) ; E = E = U .8 ; K0 = Kl = U.UU.
i i l l l l l i i r i I

2 4 6
Distance from mirror, x, radii

8 10

al, E
1
, kl ao, E0 , ko ----

rMirror

Figure 9.- Temperatures along wall of infinite cylinder having a short section with altered

properties of the insulation, paint, or both. Cylinder axis normal to the solar rays.

The short lines at the right indicate the asymptotic temperature - that is, the temper-

ature in an infinite cylinder with the given values of ao and EO. The short lines at

the left indicate the temperature in an infinite cylinder with the given values of a1

and E 1
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(d) o0=0.15; al= 0.25; E0-E 1=0.85; k 0-0.0025; kl=0.005.
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Figure 9.- Concluded.
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Sunlight

Shadow

50-layer insulation

" / 100-layer
insulation

Wall temperature

0 1 2 3
Time, hr

Figure 11.- Response to alternating 60-minute sunlight and 40-minute shadow phases of
the temperatures of the outermost sheet (To, assumed) and of the sheet adjacent to
the tube wall (Tg). Wall temperature, 297.4 K; k = 0.0025.

NASA-Langley, 1973 - 33 L-8741
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